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Abstract

Symplectic analysis is introduced into electro-magnetic waveguide theory, by using Hamiltonian system
theory in which the transverse electric and magnetic field vectors are the dual vectors. The method can
accommodate arbitrary anisotropic material and includes the interface conditions between adjacent
segments of the waveguide. An electro-magnetic stiffness matrix is introduced which relates to the two ends
of each segment of the waveguide. Both the pass- and stop-band stiffness matrices for plane waveguides
with constant cross-section are given analytically and also a transformation matrix is given to permit
abrupt changes of cross-section to occur. The variational principle is applied to obtain the segment
combination algorithm needed to generate the electro-magnetic stiffness matrix related to the two ends of
the fundamental periodical segment. Then the Wittrick–Williams algorithm is used to extract the
eigenvalues. Thereafter, an energy band analysis is performed for a periodical waveguide, e.g., a grating, by
using the symplectic eigensolutions.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

In civil and aeronautical engineering, analysis of wave propagation along a periodical structure
shows that the eigenvalues exhibit energy band behaviour [1], such that a wave with frequency o
which is in a pass-band can propagate along the periodical structure, whereas otherwise o is in a
stop-band and the wave decays to zero over long distances. The energy analysis used to find pass-
and stop-bands is also important in other practical disciplines. For example, electro-magnetic
(opto-electronic) waveguide analysis has attracted extensive attention in recent years, e.g., see,
Refs. [2–6], especially when used in optical integrated circuit analysis. Here periodical electro-
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magnetic waveguides, e.g., gratings, behave analogously to periodic structures and their band
structure is the topic of the present paper, in which symplectic mathematical analysis is introduced
for electro-magnetic waveguide analysis and shown to be effective. Hence, the numerical methods
developed in computational structural mechanics can be applied, such as wave propagation along
a periodical sub-structural chain. This interdisciplinary field offers many opportunities for further
developments.
The Maxwell equation set is the foundation for this paper. For optical materials there is usually

neither source nor current (i.e., r ¼ 0; j ¼ 0) and the equations are given as [7–9]

r �D ¼ 0; ð1Þ

r � B ¼ 0; ð2Þ

r � E ¼ �@B=@t ¼ �l@H=@t; ð3Þ

r �H ¼ @D=@t ¼ e@E=@t; ð4Þ

where E and H are, respectively, the electric and magnetic field vectors; D and B are electric
displacement density and magnetic flux density vectors and; l and e are permeability and
permittivity matrices. The constitutive relations are

D ¼ eE; ð5Þ

B ¼ lH; ð6Þ

where l for optical material can be regarded as in a vacuum, giving l ¼ m0I3 with m0 ¼ 4p� 10�7

Herry, and e is a ð3� 3Þ symmetric matrix. For isotropic material

e ¼ eI3; l ¼ m0I3: ð7a;bÞ

The Maxwell equations are formulated in the time domain, whereas the corresponding forms in
the frequency domain are

H ¼ he�iot; E ¼ iee�iot; ð8Þ

where eðx; y; z;oÞ and hðx; y; z;oÞ are to be determined. Eqs. (3) and (4) transform to

om0h ¼ R � e; oe � e ¼ R � h; ð9a;bÞ

where

R ¼

0 �@=@z @=@y

@=@z 0 �@=@x

�@=@y @=@x 0

2
64

3
75 ð10Þ

is an operator matrix.
If S is the boundary surface of a finite domain V ; the boundary condition for a perfect

conductor is

n� e ¼ 0; n ¼ ixl þ iym þ izn; on the boundary S; ð11Þ

where ix; iy and iz are unit vectors along the right-hand Cartesian co-ordinate axes x; y and z;
while l; m and n are the corresponding direction cosines. For an infinite domain the stop-band
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condition is that the vectors decay fast enough in the far field, i.e.,

eðr;oÞ-oðjrj�1Þ; hðr;oÞ-oðjrj�1Þ when jrj-N; ð12Þ

where the vector fields e and h should be found from Eqs. (9a,b) and the respective boundary
conditions.
For a finite domain V with perfect conductor boundary conditions, the variational principle

can be expressed as

Pðe; hÞ ¼ Re

R R R
V
½hH � ðR � eÞ � m0oh

Hh=2� oeHee=2� dx dy dz

þ
R R

S
eH � ðn� hÞ dS

( )
; dP ¼ 0; ð13Þ

where superscript H denotes Hermitian transposition. The components of vectors h and e are
treated as independently varying functions in the functional. Note that the boundary condition
(11) is also the natural boundary condition derived from the variational principle [10].
When treating the problem of a suddenly changing cross-section, the natural boundary

condition is a useful one. However, the alternative of a given tangential electric field vector
boundary condition esg should also be considered. Thus the boundary condition (11) is revised to

n� ðe� esgÞ ¼ 0; n ¼ ixl þ iym þ izn along the boundary S ð110Þ

and the variational principle (13) must be revised to become

Pðe; hÞ ¼ Re

R R R
V
½hH � ðR � eÞ � m0oh

Hh=2� oeHee=2� dx dy dz

þ
R R

S
ðe� esgÞ

H � ðn� hÞ dS

( )
; dP ¼ 0; ð130Þ

where esg is a given vector, i.e., it is not subject to variation. The verification of the variational
principle is almost the same as for the natural boundary condition case. Thus, after the Maxwell
equations have been satisfied in the domain, it only remains to perform the boundary surface
integration Z Z

S

dhH � ½n� ðe� esgÞ� dS ¼ 0 ð1300Þ

and because of the arbitrariness of dh; Eq. (110) is reproduced, so that the verification is complete.
The variational principle (13) can be used for an arbitrary 3D domain and therefore can

certainly be used for cylindrical domains, for which the longitudinal co-ordinate is z and the
transverse co-ordinates are x and y: The lateral boundary conditions for a perfect conductor are
ez ¼ es ¼ 0 and the normal component en is arbitrary, where ðn; s; zÞ is a right-hand Cartesian co-
ordinate system, for which the outward normal can be expressed as

n ¼ ix cos aþ iy sin a: ð14Þ

At the two ends z ¼ 0 and z ¼ zf ; the boundary conditions for a perfect conductor are ex ¼ ey ¼
0: However, other end boundary conditions are also of great interest, such as a wave radiating to
infinity with no reflection. Therefore the respective end boundary conditions should be assigned
when necessary.
The configuration of the longitudinal co-ordinate z is different to that of the transverse ones x

and y: Let partial differential with respect to it be denoted by @ð#Þ=@z ¼ ð ’#Þ and let the transverse
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vectors q and p be written as

q ¼ ex ey

� �T
; p ¼ hy �hx

� �T
: ð15Þ

These form a pair of dual vectors. Therefore the variational conditions for ez and hz can be carried
out first to derive the equations

hz ¼ ð@ey=@x � @ex=@yÞ=ðm0oÞ ¼ ð@q2=@x � @q1=@yÞ=ðm0oÞ; ð16aÞ

ez ¼ �ð@hy=@x � @hx=@yÞ=ðeoÞ ¼ �ð@p1=@x þ @p2=@yÞ=ðeoÞ: ð16bÞ

Substituting Eqs. (16a) and (16b) into the variational principle so that the integrand involves only
the components of the dual vectors q and p gives the Hamiltonian form

Pðq; pÞ ¼
Z
Re

Z Z
O

pH ’qþ j@p1=@x þ @p2=@yj2=ð2eoÞ � eoqHq=2

�m0op
Hp=2þ j@q1=@y � @q2=@xj2=ð2m0oÞ

" #
dx dy

( )
dz; dP ¼ 0; ð17Þ

where q and p are the only functions varied in the functional. The merit of using the Hamiltonian
system and symplectic geometry is that doing so enables the mathematical method of separation
of variables, symplectic eigensolutions, expansion solution, etc., to be used to solve a wide range
of problems [11,12], to which periodical waveguide problems are added in this paper. The
corresponding Hamiltonian function is

Hðq; pÞ ¼ eoqHq=2� ð@q1=@y � @q2=@xÞHð@q1=@y � @q2=@xÞ=ð2m0oÞ

þ m0op
Hp=2� ð@p1=@x þ @p2=@yÞHð@p1=@x þ @p2=@yÞ=ð2eoÞ: ð18Þ

The same form of variational principles applies to both structural mechanics and electro-magnetic
waveguide problems, so that an analogy relationship exists between them.
For the analysis of waveguides formed from homogeneous isotropic material, transmission

waves are usually classified as being composed of either transverse electric (TE) or transverse
magnetic (TM) waves. Suppose that the material inside the waveguide has eð1Þ ¼ e0n21 where n1 is
its refractive index and e0 ¼ 8:854� 10�12 F=m is its permittivity in a vacuum. Suppose also that
the cladding has permittivity eð2Þ ¼ e0n22; where n2 is its refractive index, so that certainly n2on1:
For periodical waveguides, the in-core material eð1Þ varies periodically with z while eð2Þ can be
considered to be invariable. The analysis of such waveguides, e.g., gratings, has important
applications.
Plane waveguides are often used in engineering, see Fig. 1. Here the longitudinal co-ordinate is

z; x is along the thickness direction, the field is independent of y and there are three layers, namely
the substratum, thin film, and cladding [13]. These three layers have refractive indices of,
respectively, n2; n1 and n3; such that n1 > n2Xn3: The thin film may be multi-layered, but in this
paper only a single-layer periodical waveguide is considered.

2. Analytical solution for a homogeneous plane waveguide with a single thin layer

Each segment is uniform in the z direction and has the three layers described above, see Fig. 1.
In the simplest case the substratum and cladding layers can be treated as perfect conductors and
the analytical solution can easily be found, whereas for other cases the semi-analytical FE method

ARTICLE IN PRESS

W.X. Zhong et al. / Journal of Sound and Vibration 267 (2003) 227–244230



can be applied. The field solution is composed of TE and TM waves. As a first step, the analytical
solution for a homogeneous waveguide is found, as follows.
Because the field is invariant in the y direction,

Eðx; z; tÞ ¼ e exp½iðkz � otÞ�; Hðx; z; tÞ ¼ h exp½iðkz � otÞ�: ð19Þ

For isotropic material, the equations can be derived in terms of only one kind of variable, i.e., the
components of E but not of H: Hence Eqs. (3) and (4) become

ey ¼ �ðom0=kÞhx; @ez=@x � ikex ¼ �iom0hy; @ey=@x ¼ iom0hz; ð20Þ

hy ¼ ðoe=kÞex; @hz=@x � ikhx ¼ ioeey; @hy=@x ¼ �ioeez ð21Þ

and the lateral boundary conditions are

ez ¼ 0; ey ¼ 0; when x ¼ 0 or x ¼ x1; ð22Þ

where x1 is shown in Fig. 1.
The differential equations governing the film of the mth segment ðzm�1; zmÞ are

d2ey=dx2 þ ðo2m0em � k2mÞey ¼ 0; d2ez=dx2 þ ðo2m0em � k2mÞez ¼ 0 ð23a;bÞ

and for pass-bands the analytical problem for this segment is to find the eigenvalue k2m for a given
o; which can be found from

ðo2m0em � k2mÞ ¼ ðip=x1Þ
2; i:e:; o2m0em � ðip=x1Þ

2 ¼ k2m: ð24Þ

The corresponding two eigenfunctions are given in Ref. [14] but can also readily be re-derived as

TE pass� band :

ex ¼ 0; ey ¼ Ai;m sinðipx=x1Þ; ez ¼ 0

hx ¼ �ðkmAi;m=om0Þsinðipx=x1Þ; hy ¼ 0

hz ¼ �iðip=x1om0ÞAi;m cosðipx=x1Þ

ði ¼ 1; 2;yÞ; ð25aÞ

TM pass� band :

ex ¼ �i½kmx1=ðipÞ�Bi;m cosðipx=x1Þ; ey ¼ 0

ez ¼ Bi;m sinðipx=x1Þ; hx ¼ 0; hz ¼ 0

hy ¼ �i½oemx1=ðipÞ�Bi;m cosðipx=x1Þ

ði ¼ 1; 2;yÞ: ð25bÞ
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Substituting into Eq. (19) easily shows that Eqs. (1)–(4) are satisfied. Here Ai;m and Bi;m are
constants to be determined; the two solutions can be linearly superposed and; the subscript i
denotes the wave number of sine and cosine functions.
In addition, it is necessary to consider the stop-band solution, i.e., the case o2m0em �

ðip=x1Þ
2o0: Then Eq. (19) should be replaced by

Eðx; z; tÞ ¼ e exp½gmz � iot�; Hðx; z; tÞ ¼ h exp½gmz � iot�: ð190Þ

Because gm is not a pure imaginary eigenvalue, the solution is in the stop-band and is found to be

Stop-band TE :

ex ¼ 0; ey ¼ A0
i;m7 sinðipx=x1Þ; ez ¼ 0;

hx ¼ iðgmA0
i;m7=om0Þsinðipx=x1Þ; hy ¼ 0;

hz ¼ �iðip=x1om0ÞA
0
i;m7 cosðipx=x1Þ;

ð26aÞ

Stop-band TM :

ex ¼ �½gm2x1=ðipÞ�B0
i;m7 sinðipx=2x1Þ; ey ¼ 0;

ez ¼ B0
i;m7 cosðipx=2x1Þ; hx ¼ 0;

hy ¼ �i½oe12x1=ðipÞ�B0
i;m7 sinðipx=2x1Þ; hz ¼ 0;

ð26bÞ

where gm ¼ 7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðip=x1Þ

2 � o2emm0

q
and A0

i;m; B0
i;m are constants to be determined. The7 sign gives

two solutions, where the positive sign solution decays as z-�N: However, because the segment
is of finite length both solutions are needed when linearly superposing the eigensolutions for the
various wave numbers i: Only the TE wave solution is considered below, because the TM solution
is similar.

3. The electro-magnetic energy method for the fundamental periodical segment set

A periodical waveguide, e.g., a grating, consists of an infinite number of identical segment sets
connected together end to end, to form a chain-type topology. Every set consists of several
uniform segments with different cross-sections and/or material properties. Each segment is
governed by the above eigensolutions and there must be continuity at their interfaces of the
tangential components of Ex; Ey; Hx and Hy:
Without loss of generality, for simplicity, suppose that each segment set has only two uniform

segments, with lengths l1 and l2; respectively. The fundamental period of a typical such segment
set of length ðl1 þ l2Þ is analyzed first and then the analysis is extended to waveguides which repeat
periodically to infinity. Let the origin z ¼ 0 be chosen at the interface, so that �l1ozo0 for
segment 1 and 0ozol2 for segment 2. Hence the typical segment set ¼ ðsegment 1þ segment 2þ
the interface at z ¼ 0Þ and the solutions for segments 1 and 2 are given by Eqs. (25a) and (25b)
with m ¼ 1 and 2, respectively.
The interface conditions at z ¼ 0 are continuity of Ex; Ey; Hx and Hy: Because solutions (25)

and (26) are both sinusoidal in the x direction these conditions are easy to satisfy when the
waveguide has constant thickness, i.e., x2 ¼ x1: However, when the cross-section is stepped at the
interface, with x2 > x1; it is necessary to introduce the additional interface boundary condition
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that the tangential electric field component is zero for x1oxox2: So let

E ¼ *e expð�iotÞ; H ¼ *h expð�iotÞ; ð27a;bÞ

where the tilde above symbols denotes that they are functions of ðx; y; zÞ; not just the ðx; yÞ of
Eq. (19).
For problems with a cylindrical domain of cross-section O; the dual vectors q and p are

q ¼ f *ex *ey g
T; p ¼ f *hy � *hx g

T; ð28Þ

from which the Hamiltonian-type variational principle (17) follows. The basis functions of the
state vectors can be assigned on the cross-section O and the semi-analytical method can be
applied. From the variational principle (17) the differential equation set for the longitudinal co-
ordinate z and the corresponding variational principle can be derived.
For Eqs. (25a) and (26a) of segment 2 for TE solutions,

q1 ¼ 0; q2 ¼ q2iðzÞ � sinðipx=x2Þ; ð29Þ

p1 ¼ 0; p2 ¼ p2iðzÞsinðipx=x2Þ; ð30Þ

where i ð¼ 1; 2;yÞ are parameters and q2iðzÞ and p2iðzÞ are the functions to be determined. Taking
unit width in the y direction and integration over O gives

Piðq2i; p2iÞ ¼
Z l2

0

½p2i ’q2i � oe2q22i=2� m0op22i=2þ ðip=x2Þ
2q22i=2m0o� dz; dPi ¼ 0; ð31Þ

where e2 is the permittivity of segment 2 and the factor ðx2=2Þ has been cancelled. (For segment 1,
the integration limits become ð�l1; 0Þ and the subscript 2 becomes 1.) The varying functions in
Eq. (31) are q2i and p2i: Performing the variation for p2i with

p2i ¼ ’q2i=ðm0oÞ ð32Þ

and substituting back into Eq. (31) gives the variational principle for the single variable q2i as

Uiðq2iÞ ¼
Z l2

0

½ ’q22i=ð2m0oÞ � oe2q22i=2þ ðip=x2Þ
2q22i=2m0o� dz; dUi ¼ 0;

where Uiðq2iÞ is named the electro-magnetic potential in this paper, and is determined by the two
end variable values q2ið0Þ and q2iðl2Þ:
More precisely, the integration lower and upper bounds za and zb (i.e., the two ends of the

segment) can also be treated as variables and the functional is then

Uiðq2i; za; zbÞ ¼
Z zb

za

½ ’q22i=ð2m0oÞ � oe2q22i=2þ ðip=x2Þ
2q22i=2m0o� dz; dUi ¼ 0: ð33Þ

The differential equation in the domain can be derived from Eq. (33) as

d2q2i=dz2 þ ½o2m0e2 � ðip=x2Þ
2�q2i ¼ 0
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and the two end boundary conditions are q2iðzaÞ ¼ qai and q2iðzbÞ ¼ qbi: Solving for q2iðzÞ gives

q2iðzÞ ¼ ½qai sinðkiðzb � zÞÞ þ qbi sinðkiðz � zaÞÞ�=sinðkiðzb � zaÞÞ;

p2iðzÞ ¼ ðki=om0Þ½qbi cosðkiðz � zaÞÞ � qai cosðkiðzb � zÞÞ�=sinðkiðzb � zaÞÞ

½¼ ’q2i=om0�; ki ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2m0e2 � ðip=x2Þ

2
q

; ð34Þ

i.e., q2iðzÞ and p2iðzÞ are functions of qai and qbi: Substituting into functional (33) gives the electro-
magnetic potential Uiðqai; qbiÞ as the following quadratic function of qai and qbi:

Uiðqai; qbiÞ ¼
qai

qbi

( )T

Kiðza; zbÞ
qai

qbi

( )
=2: ð35Þ

Here Kiðza; zbÞ is a ð2� 2Þ symmetric matrix, which appears not to have previously been named
and for which the name electro-magnetic segment stiffness matrix, or simply stiffness matrix, is
used in this paper. (In the analogous analytical dynamics problem Uiðqai; qbiÞ is the action function
and in the alternative analogous theory of structural mechanics it is the (dynamic) potential
energy [11].) Both Uiðqai; qbiÞ and Kiðza; zbÞ depend on the frequency o; which is a parameter here,
and are usually not expressed explicitly.
For a one-dimensional problem with both e2 and m0 constant, the ð2� 2Þ matrix Kiðza; zbÞ can

be found analytically, as follows. Carrying out the variation for the electro-magnetic potential of
Eq. (33) gives

dUiðqai; qbiÞ ¼ ½ð ’qi=m0oÞdqi�zb
za
¼ ½ ’qbidqbi � ’qaidqai�=m0o ¼ pbidqbi � paidqai: ð36Þ

Let za ¼ 0 and zb ¼ l2: Then the sub-matrices Kið0; l2Þ are the ð1� 1Þ scalars

Kiaa ¼ Kibb ¼ ½ki cotðkil2Þ=ðm0oÞ�; Kiab ¼ ½�ki=½m0o sinðkil2Þ��: ð37aÞ

Here the subscript i ð¼ 1; 2;y; nÞ means that n one-dimensional problems are combined together
to give the ð2n � 2nÞ matrix Kð0; l2Þ; which can be partitioned as

K ¼
Kaa Kab

Kba Kbb

" #
; Kaa ¼ KTaa; Kbb ¼ KTbb; Kba ¼ KTab; ð37Þ

so that Kaa; Kbb and Kab are ðn � nÞ diagonal matrices given explicitly by Eqs. (37a) and (37) and
correspond to a waveguide segment of thickness x2: For the condition o2m0e2 � ðip=x2Þ

2 > 0 this
yields Eq. (34), whereas when o2m0e2 � ðip=x2Þ

2o0 the solution is
q2iðzÞ ¼ ½qai sinhðgiðzb � zÞÞ þ qbi sinhðgiðz � zaÞÞ�=sinhðgiðzb � zaÞÞ;

p2iðzÞ ¼ ðgi=m0oÞ½qbi coshðgiðz � zaÞÞ � qai coshðgiðzb � zÞÞ�=sinhðgiðzb � zaÞÞ

¼ ’q2i=om0;

gi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðip=x2Þ

2 � o2m0e2
q

;

9>>>>>=
>>>>>;

ð340Þ

and

Kiaa ¼ Kibb ¼ ½gi cothðgil2Þ=ðm0oÞ�; Kiab ¼ ½�gi=ðm0o sinhðgil2ÞÞ�: ð37a0Þ

The Stiffness matrix is the basic tool used in the FEM analysis of structural mechanics.
However, introducing their potential energy and stiffness matrix has enabled electro-magnetic
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waveguides to be analyzed by the structural mechanics methodology, especially when combining
two consecutive segments. For a uniform waveguide, the cases of i ¼ 1;y; n are solved separately
and for each case the stiffness matrix K is derived analytically, via Eqs. (37) and (37a0), as a
diagonal matrix.
However, the structural dynamics analogy shows that the stiffness matrix alone is insufficient

for later use because the eigenvalue problem is of vital importance and is well known to need the
associated eigenvalue count (EC), which for one segment with clamped end boundary conditions,
i.e., q ¼ 0; is defined as

EC ¼ Jiðo2#Þ; ð38Þ

where o# is a given frequency and Jiðo2#Þ equals the number of eigenvalues o for which
0oopo#: This implies that the eigensolutions for Jiðo2#Þ are internal to the segment.
The Wittrick–Williams (W–W) algorithm [15] was developed to calculate the EC during

structural dynamics calculations for complete structures, composed of many members. However,
because of the analogy between structural mechanics and wave-guide problems, it can also be
applied to eigenvalue problems for electro-magnetic wave-guides composed of many segments as
follows. For a constant cross-section segment the analytical solution is derived as above, so that
the EC for the jth segment zjozozjþ1 is

Jiðo2#Þ ¼
0 when o2#m0ej � ðip=xjÞ

2p0;

intfkjðzjþ1 � zjÞ=pg when k2j ¼ o2#m0ej � ðip=xjÞ
2 > 0;

(
ð38aÞ

where xj is its thickness.
However, often Kc does not have diagonal sub-matrices, e.g., when the semi-analytical method

is used. Then Kc must be found in a single set of operations rather than by the n separate sets used
above to find the diagonal elements. Then when two adjacent segments ðza; zbÞ and ðzb; zcÞ are
combined, see Fig. 2, the sub-matrices of the partitioned stiffness matrix Kc of the combined
segment ðza; zcÞ are computed as [16]

KðcÞ
aa ¼ Kð2Þ

aa � Kð2Þ
ab ðK

ð1Þ
bb þ Kð2Þ

aa Þ
�1K

ð2Þ
ba ; ð39aÞ

K
ðcÞ
bb ¼ Kð2Þ

bb � Kð2Þ
ba ðK

ð1Þ
bb þ Kð2Þ

aa Þ
�1K

ð2Þ
ab ; ð39bÞ

K
ðcÞ
ab ¼ �Kð1Þ

ab ðK
ð1Þ
bb þ Kð2Þ

aa Þ
�1K

ð2Þ
ab ; K

ðcÞ
ba ¼ KðcÞT

ab ; ð39cÞ

and its EC is given by the W–W algorithm as [15,17]

Jcðo2#Þ ¼ J1ðo2#Þ þ J2ðo2#Þ þ sfKiig; Kii ¼ ðKð1Þ
bb þ Kð2Þ

aa Þ; ð39dÞ
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where sfKiig is computed by factorizing the matrix Kii into LDL
T and is equal to the number of

negative elements in the diagonal matrix D:
The above equations can be applied for arbitrary ðn � nÞ sub-matrices. However, the variational

principle (33) is for a one-dimensional function q2i and so these sub-matrices all become scalars.
Then assembling for i ¼ 1;y; n (e.g., see below Eq. (37a)) gives an ðn � nÞ diagonal matrix.
For za ¼ �l1; zb ¼ 0 and zc ¼ l2; the combination of segments 1 and 2 gives the length of the

fundamental period as ðl1 þ l2Þ; with its characteristics described by the electro-magnetic stiffness
matrix Kc related to its two ends. The sub-matrices of Kc can be computed from Eqs. (39a)–(39d),
with the stiffness matrix and EC of segment 2 given by Eqs. (37) and (38), while those of segment 1
are obtained by using l1 instead of l2 in these equations. Note that Eqs. (39a)–(39d) are derived for
constant cross-section segments. However, in the present application there is a step change of
cross-section with x1ox2 and the conditions at the junction are

eyðþ0Þ ¼
eyð�0Þ; xox1

0; x1pxox2

(
; hxðþ0Þ ¼

hxð�0Þ; xox1

0; x1pxox2

(
at z ¼ 0:

The variational method can be used to process these junction conditions. According to Eq. (34),
the field components of the TE solution at the two ends of segment 2 are

eyaðþ0Þ ¼
Xn

i¼1

q
ð2Þ
ai sinðipx=x2Þ; hxaðþ0Þ ¼ �

Xn

i¼1

ðkiq
ð2Þ
ai =om0Þsinðipx=x2Þ;

eybðl2 � 0Þ ¼
Xn

i¼1

q
ð2Þ
bi sinðipx=x2Þ; hxbðl2 � 0Þ ¼ �

Xn

i¼1

ðkiq
ð2Þ
bi =om0Þsinðipx=x2Þ; ð40Þ

where ki ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2m0e2 � ðip=x2Þ

2
q

; subscript a in q
ð2Þ
ai represents the left-hand end and superscript (2)

indicates that the sine series expansion used is that for thickness x2: Note that the corresponding
sine series expansion for segment 1 is for the different thickness x1 and so directly connecting the
equations of the two segments at their interface is inappropriate.
To correct for this an extended segment 2e is defined as ð�0; l2 þ 0Þ and with its two ends both

having thickness x1: Applying the variational principle to this extended segment requires the
boundary condition of the two ends a and b to be

eyað�0Þ ¼

Pm
j¼1 q

ð1Þ
aj sinðjpx=x1Þ; xox1;

0; x1pxox2;

(

eybðl2 þ 0Þ ¼

Pm
j¼1 q

ð1Þ
bj sinðjpx=x1Þ; xox1;

0; x1pxox2:

(
ð41Þ

The sine series expansion of segment 2 has n terms, whereas that for segment 1 has m terms and so
does that for segment 2e. Therefore, Eq. (41) is the given tangential electrical field vector esg in the
variational principle (130). Eq. (34) derives the field in a domain satisfying the differential
equations. Therefore it only remains to satisfy the boundary integration (1300), in which Eq. (40)
gives e; Eq. (41) gives esg and the dh distribution along x again has the form sinðjpx=x2Þ
ðj ¼ 1;y; nÞ; see Eq. (40). Hence the combined variational equation for the tangential electrical
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field is derived as Z x2

0

½eyaðþ0Þ � eyað�0Þ�sinðipx=x2Þ dx ¼ 0:

Carrying out the integration gives

q
ð2Þ
ai ¼

Xm

j¼1

Tij � q
ð1Þ
aj ; i ¼ 1;y; n or qð2Þa ¼ Tqð1Þa ;

Tij ¼ sin½ðj � ix1=x2Þp�=½pðjx2=x1 � iÞ� � sin½ðj þ ix1=x2Þp�=½pðjx2=x1 þ iÞ�; ð42Þ

where the vectors qð2Þa and qð1Þa are of orders n and m; respectively, so that the transformation
matrix T has dimension ðn � mÞ: A similar derivation for the right-hand end gives q

ð2Þ
b ¼ Tqð1Þb :

Here subscripts a and b represent the left- and right-hand ends, and superscripts (1) and (2) denote
series expansion for thickness x1 or x2; respectively. Note that as ðjx2=x1 � iÞp;¼ r say, tends to
zero sin½ðj � ix1=x2Þp�=½pðjx2=x1 � iÞ� ¼ sin½rx1=x2Þ=r-x1=x2 and therefore the coefficients of the
matrix T cannot be singular.
Eq. (37) gives the electro-magnetic segment diagonal stiffness matrix K

ð2Þ
2 in analytical form, but

corresponding to waveguide thickness x2 and to the two end vectors q
ð2Þ
a and q

ð2Þ
b : However, the

transformation matrix T just derived enables it to be transformed into

K
ð1Þ
2 ¼

TT 0

0 TT

" #
K

ð2Þ
2

T 0

0 T

" #
; ð43Þ

which corresponds to the two end electric field vectors qð1Þa and q
ð1Þ
b for thickness x1: Note that

although the submatrices of K
ð2Þ
2 are diagonal and ðn � nÞ; Kð1Þ

2 is a fully populated ð2m � 2mÞ
matrix. Note too that for a general cross-section waveguide, the semi-analytical method can be
used to discretize the cross-section to obtain an n-dimensional electric vector q; after which using
the precise integration method gives a stiffness matrix K

ð2Þ
2 which, unlike above, is fully populated.

However, the semi-analytical method for waveguides and associated precise integration is beyond
the scope of this paper, except for the observation that if a cross-section step occurs the T matrix
transformation is still needed.
The transformed stiffness matrix K

ð1Þ
2 represents the behaviour of segment 2 but with respect

to the reduced cross-section of segment 1. Its EC is unaffected by the transformation, because
the boundary condition at the step is q ¼ 0 and so is the same as that used to define Jiðo2#Þ:
However, the fundamental period segment set is composed of both segments 1 and 2, so that
the electro-magnetic stiffness matrix K

ð1Þ
1 is also required. Substituting K

ð1Þ
1 and K

ð1Þ
2 into the

interval (segment) combination algorithm of Eqs. (39a)–(39d), see Fig. 2, gives the combined

electro-magnetic stiffness matrix Kc and Jcðo2#Þ for the fundamental period of the waveguide.
This computation of Kc is fundamental to the analysis of a periodical waveguide, e.g., a
grating, and corresponds to the dynamic sub-structural stiffness matrix Kc of structural
dynamics [17].

Example. The following numerical example shows how to find Kc for the fundamental period
when e1 ¼ e2 ¼ e0; m0e0 ¼ 1=c2; c ¼ 2:998� 108 m=s ð¼ the velocity of lightÞ; o=c ¼ 4:0�
106 m�1; x2 ¼ 1:25� 10�6 m; x1 ¼ 0:8x2 and l1 ¼ l2 ¼ 1� 10�7 m:

ARTICLE IN PRESS

W.X. Zhong et al. / Journal of Sound and Vibration 267 (2003) 227–244 237



Solution. The numbers of expansion terms used for segments 1 and 2 were m ¼ 4 and n ¼ 6;
respectively. Hence Eq. (42) gives the ðn � mÞ transformation matrix T as

TT ¼

0:83155 0:31049 �0:10176 0:03240 0 �0:01358

�0:17819 0:67273 0:55042 �0:09595 0 0:03145

0:10742 �0:22564 0:44849 0:72425 0 �0:06397

�0:07796 0:14416 �0:18921 0:20789 0:8 0:17009

2
6664

3
7775;

so that Eqs. (37a) and (37) give

K
ð1Þ
1 ¼

diagmðk
ð1Þ
i =½m0o tanðk

ð1Þ
i l1Þ�Þ diagmð�kð1Þi =½m0o sinðk

ð1Þ
i l1Þ�Þ

diagmð�kð1Þi =½m0o sinðk
ð1Þ
i l1Þ�Þ diagmðk

ð1Þ
i =½m0o tanðk

ð1Þ
i l1Þ�Þ

" #
; ð44aÞ

K
ð2Þ
2 ¼

diagnðk
ð2Þ
i =½m0o tanðk

ð2Þ
i l2Þ�Þ diagnð�kð2Þi =½m0o sinðk

ð2Þ
i l2Þ�Þ

diagnð�kð2Þi =½m0o sinðk
ð2Þ
i l2Þ�Þ diagnðk

ð2Þ
i =½m0o tanðk

ð2Þ
i l2Þ�Þ

" #
; ð44bÞ

kð1Þi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2m0e1 � ðip=x1Þ

2
q

; kð2Þi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2m0e2 � ðip=x2Þ

2
q

;

where K
ð1Þ
1 is a ð2m � 2mÞ matrix. Eqs. (44a) and (44b) are for the pass-bands, whereas the stop-

bands are given by

K
ð1Þ
1 ¼

diagmðg
ð1Þ
i =½m0o tanhðg

ð1Þ
i l1Þ�Þ diagmð�gð1Þi =½m0o sinhðg

ð1Þ
i l1Þ�Þ

diagmð�gð1Þi =½m0o sinhðg
ð1Þ
i l1Þ�Þ diagmðg

ð1Þ
i =½m0o tanhðg

ð1Þ
i l1Þ�Þ

" #
; ð440aÞ

K
ð2Þ
2 ¼

diagnðg
ð2Þ
i =½m0o tanhðg

ð2Þ
i l2Þ�Þ diagnð�gð2Þi =½m0o sinhðg

ð2Þ
i l2Þ�Þ

diagnð�gð2Þi =½m0o sinhðg
ð2Þ
i l2Þ�Þ diagnðg

ð2Þ
i =½m0o tanhðg

ð2Þ
i l2Þ�Þ

" #
; ð440bÞ

gð1Þi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðip=x1Þ

2 � o2m0e1
q

; gð2Þi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðip=x2Þ

2 � o2m0e2
q

:

Hence the sub-matrices Kð1Þ
aa ; K

ð1Þ
ab and K

ð1Þ
bb of K

ð1Þ
1 ; which appear on the right-hand side of

Eq. (39), are computed as

Kð1Þ
aa ¼ Kð1Þ

bb ¼ 106 � diagð9:79481; 10:77063; 12:31731; 14:33589Þ;

K
ð1Þ
ab ¼ 106 � diagð�10:10291;�9:61915;�8:88198;�7:97522Þ:

Similarly the sub-matrices of the ð2n � 2nÞ matrix Kð2Þ
2 are

K
ð2Þ
aa2 ¼ K

ð2Þ
bb2 ¼ 106 � diagð9:67512; 10:30698; 11:32594; 12:68670; 14:33589; 16:21856Þ;

K
ð2Þ
ab2 ¼ 106 � diagð�10:16323;�9:84722;�9:35029;�8:71135;�7:97522;�7:18651Þ:
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The transformation of Eq. (43) gives the sub-matrices of the ð2m � 2mÞ matrix Kð1Þ
2 which are

required for the right-hand side of Eq. (39) as

K
ð1Þ
aa2 ¼ K

ð1Þ
bb2 ¼ 106 �

7:81728 0:03861 �0:06295 0:10019

0:03861 8:53600 0:13193 �0:21186

�0:06295 0:13193 9:63555 0:35631

0:10019 �0:21186 0:35631 10:87091

2
6664

3
7775 � Kð2Þ

aa ¼ Kð2Þ
bb ;

K
ð1Þ
ab2 ¼ 106 �

�8:08418 0:00288 �0:00190 �0:00402

0:00288 �7:69935 0:00091 0:01293

�0:00190 0:00091 �7:09821 �0:03455

�0:00402 0:01293 �0:03455 �6:28966

2
6664

3
7775 � Kð2Þ

ab :

Note that the alternative notations given on the left and right of the above equations are necessary
because K

ð1Þ
aa2; K

ð1Þ
bb2 and K

ð1Þ
ab2 in the derivation above correspond to the K

ð2Þ
aa ; K

ð2Þ
bb and K

ð2Þ
ab of

Eqs. (39a)–(39c).
Hence the ðm � mÞ stiffness sub-matrices KðcÞ

aa ; K
ðcÞ
ab and K

ðcÞ
bb of the fundamental period are

computed by Eq. (39) as

KðcÞ
aa ¼ 106 �

3:99921 0:01139 �0:01501 0:01845

0:01139 5:97741 0:02724 �0:03378

�0:01501 0:02724 8:72270 0:04586

0:01845 �0:03378 0:04586 11:81172

2
6664

3
7775;

K
ðcÞ
ab ¼ 106 �

�4:63754 0:01074 �0:01301 0:01217

0:01054 �3:83654 0:02208 �0:02009

�0:01276 0:02210 �2:87251 0:02214

0:01351 �0:02296 0:02572 �1:99045

2
6664

3
7775;

K
ðcÞ
bb ¼ 106 �

4:10640 0:04835 �0:07396 0:10894

0:04835 5:46520 0:14986 �0:22472

�0:07396 0:14986 7:34003 0:36538

0:10894 �0:22472 0:36538 9:30125

2
6664

3
7775;

based on which the energy band analysis of a periodical waveguide can be executed as given
below. Note that m ¼ 4 and n ¼ 6 were used in this example for compactness of presentation,
although higher values might be needed depending upon the precision required. An indication of
the effects of changing m and n is given in the penultimate paragraph of the next section.
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4. Energy band analysis for a grating and eigensolution of a symplectic matrix

After the stiffness matrix Kc of a single fundamental period has been calculated, the energy
band analysis for a periodical waveguide proceeds as follows, by treating the fundamental period
as the repeating unit of the periodical waveguide, e.g., of the grating. The electro-magnetic
stiffness matrix Kc and the respective electro-magnetic energy Ueðqa; qbÞ are given by

Kc ¼
Kaa Kab

Kba Kbb

" #
; Ueðqa; qbÞ ¼

qa

qb

( )T

Kc

qa

qb

( )
=2; ð45Þ

where superscript ðcÞ has been removed from KðcÞ
aa ; etc., and qa and qb are the two end electrical

field vectors of the waveguide fundamental period, being m-dimensional and formed by a Fourier
series expansion for the thickness x1:
In structural mechanics, the periodical waveguide corresponds to a sub-structural chain [18], and

a period of the waveguide corresponds to a segment of the sub-structural chain, the dynamic
strain energy of which is Ueðqa; qbÞ: The variational principle for a sub-structural chain of n
fundamental segments is

Pðq0; qnÞ ¼
Xi¼n

i¼1

Ueiðqi�1; qiÞ; dPjqi ; i¼1;y;n�1 ¼ 0: ð46Þ

Using the method in Ref. [16], introducing the dual variable [in electro-magnetic theory (magnetic
field=om0), see Eqs. (34) and (36)]

pa ¼ �@Ue=@qa ¼ �ðKaaqa þ KabqbÞ; ð47aÞ

pb ¼ �@Ue=@qb ¼ ðKbaqa þ KbbqbÞ: ð47bÞ

From Eq. (46), the equation derived for the ith station is

@Uiðqi�1; qiÞ=@qi þ @Uiþ1ðqi; qiþ1Þ=@qi ¼ pb;i � pa;iþ1 ¼ 0:

This is called the equilibrium equation in structural mechanics, whereas for waveguides it is the
tangential magnetic field continuity equation. Eq. (47) expresses the dual vector of the original
vectors qa and qb; so that the state vector can be composed as

vj ¼ f qTj pTj gT ð48aÞ

and Eq. (47) can be derived in the form of expressing the right-hand end state vector vb in terms of
the left-hand end state vector va; giving

vb ¼ Sva; i:e:; vjþ1 ¼ Svj; ð48bÞ

S ¼
S11 S12

S21 S22

" #
;

S11 ¼ �K�1
ab Kaa; S12 ¼ �K�1

ab ;

S21 ¼ Kba � KbbK
�1
ab Kaa; S22 ¼ �KbbK

�1
ab :

ð49Þ

The sub-matrices Kaa; Kab and Kbb are ðm � mÞ and S is called the transfer matrix. It is a
symplectic matrix, i.e., it satisfies

STJS ¼ J; ð50Þ
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where

J ¼
0 Im

�Im 0

" #
; JT ¼ J�1 ¼ �J; J2 ¼ �I2m: ð51Þ

Using the method of separation of variables to solve the transfer matrix Eq. (48b) yields the
eigenvalue problem

Sw ¼ mw ð52Þ

This m-dimensional problem is solved [16,18–21] by first finding the eigensolution ðm;wÞ of
Eq. (52), so that the solution of the original Eq. (48b) is vj ¼ mjw:
The eigenproblem for a symplectic matrix has the characteristic that if m is an eigenvalue then so

also is m�1; as follows. Left multiplying Eq. (52) by STJ and using Eq. (50) gives STðJwÞ ¼
m�1ðJwÞ; which determines that m�1 is an eigenvalue of ST and that the corresponding eigenvector
is Jw: However, ST and S have the same eigenvalue spectra, hence the 2m eigenvalues of S can be
subdivided into the two classes:

ðaÞ mj; absðmjÞo1 or absðmjÞ ¼ 14 ImðmjÞ > 0; j ¼ 1;y;m; ð53aÞ

ðbÞ mmþj ¼ m�1j ; j ¼ 1;y;m; ð53bÞ

where mj and mmþj are called mutually symplectic adjoint.
Suppose that S has two eigensolutions denoted by j and k: Then deriving as follows:

Swj ¼ mjwj; Swk ¼ mkwk;

STðJwjÞ ¼ m�1j ðJwjÞ; wT
k � ST ¼ mkw

T
k ;

wT
k � ðSTJÞ � wj ¼ m�1j wT

k � J � wj; wT
k � ðSTJÞ � wj ¼ mkw

T
k � J � wj

gives by subtraction of the equations in the final line

ðmk � m�1j ÞwT
k � J � wj ¼ 0:

Hence, either the two eigensolutions are j and k ¼ m þ j and are symplectic adjoint, and hence the
constant multipliers can be selected to be symplectic normalized, or the eigenvectors must be
symplectic orthogonal, i.e.,

kam þ j and wT
k � J � wj ¼ 0; ð54Þ

which is called adjoint symplectic ortho-normality. Composing a ð2m � 2mÞ matrix W by using all
the eigenvectors gives

W ¼ w1 ? wm; wmþ1 ? w2m

� �
ð55Þ

and then using the adjoint symplectic ortho-normality relationship yields the matrix equation
WTJW ¼ J; so that W is a symplectic matrix.
When m ¼ eiy is an eigenvalue, then the transfer Eq. (48b) has the solution vj ¼ mjw; and

absðmjÞ ¼ absðeiðjyÞÞ ¼ 1: Therefore the vector vj does not decay with subscript j and so the solution
gives a transmission wave.
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When m ¼ 1; the eigenequation becomes m2 � ðS11 þ S22Þmþ 1 ¼ 0: Then for

ðS11 þ S22Þ
2o4 or abs½ðK11 þ K22Þ=K12�o2; ð56Þ

a transmission wave appears, i.e., o is in a pass-band. Treating o as a variable, changing the
inequality sign to an equals sign and solving with respect to o gives the boundary between pass-
and stop-bands.
The general case is multi-dimensional (m-dimensional) and so solving the symplectic eigenvalue

problem (52) requires prior solution of a symplectic eigenproblem for a skew-symmetric matrix, as
follows. Left multiplying Eq. (52) by STJ gives STðJwÞ ¼ m�1ðJwÞ and then using Eq. (50) gives
S�1w ¼ m�1w: Hence it follows that

Aw ¼ ðmþ m�1ÞJw; A ¼ JðSþ S�1Þ; AT ¼ �A; ð57Þ

where the skew-symmetric nature of matrix A is readily verified from Eq. (50). Solving to find
the pairs of eigensolutions of Eq. (57) gives a 2-D sub-space of the original equation (52),
after which the two solutions in the sub-space can conveniently be found. The algorithm
for such eigensolution is available, see Refs. [16,18–21]. For the numerical periodical waveguide
example given in the previous section, the eigenvalues are found (by again using m ¼ 4 and n ¼ 6)
to be

�0:43114 �0:77886

�0:37586 �2:66058 �0:17350 �5:76373

70:90229i 70:62720i

where the two complex conjugate pairs of eigenvalues ð�0:4311470:90229iÞ and
ð�0:7788670:62720iÞ are of unit absolute value, which means they lie in a pass-band, whereas
the latter two pairs of eigenvalues are the reciprocals of each other, which obeys Eq. (53) for
symplectic eigenvalues and so they are in a stop-band. (To save space, the eigenvectors have been
omitted above.)
The following additional results are given to show the effects of altering the values of the

numbers of expansion terms m and n used and it can be seen that they are very similar to those
given above for m; n ¼ 4; 6:

�0:43134 �0:77971

m; n ¼ 5; 7 : �0:37538 �2:66397 �1:7399 �5:74736:

70:90219i 70:62615i

�0:43147 �0:78028

m; n ¼ 9; 9 : �0:37501 �2:66661 �0:17408 �5:74459:

70:90213i 70:62543i
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However, if the lengths of segments are changed to l1 ¼ l2 ¼ 0:5� 10�6 m; the eigenvalue
spectrum becomes

0:48434

�1=53:6491; �53:6491; �1=1922:29; �1922:29; �1=50802:3; �50802:3

70:87488i;

which has one pair of pass-band eigenvalues and the other pairs are reciprocals of each other.

5. Concluding remarks

Periodical electro-magnetic waveguides have very important applications as gratings and so
require careful analysis. It has been shown that symplectic mathematics forms a powerful tool for
their analysis, especially when using the analogy between structural mechanics and waveguide
problems. It also enables the associated transcendental eigenvalue problem to be solved by using
the W–W algorithm. The electro-magnetic stiffness matrix and its associated eigenvalue count
have been introduced for the fundamental period of the waveguide and then the variational
principle and symplectic eigensolutions have been applied to periodical waveguide problems.
Energy band analysis has been carried out on this basis.
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